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A multigrid solver for the steady incompressible Navier—Stokes
equations on a curvilinear grid is constructed. The Cartesian velocity
components are used in the discretization of the momentum eqguations.
A staggered, geometrically symmetric distribution of velocity
components is adopted which eliminates spurious pressure oscillations
and facilitates the transformation between Cartesian and co-or contra-
variant velocity components. The SCGS (symmetrical collective
Gauss-Seidel) relaxation schame proposed by Vanka an a Cartesian
grid is extended to this case to serve as the smoothing procedure of the
multigrid solver, in both “box” and “box-line” versions. Due to the
symmetric distribution of velocity components of this scheme, the
convergence rate and numerical accuracy are not affected by grid
orientation, in contrast to a scheme proposed in the literature in which
difficulties arise when the grid lines turn 90° from the Cartesian
coordinates. Some preliminary numerical experiences with this scheme
are presented.  © 1994 Academic Press, tnc.

1. INTRODUCTION

Finite difference and finite element methods for solving
the incompressible Navier-Stokes equations are both under
development. Although hnite element methods have advan-
tages in dealing with irregular geometrics, they require
complicated calculations and large storage space in the
construction and solution of the discrete equations,
compared to finite difference methods. An important step
toward the treatment of complex geometries with finite
difference methods is the introduction of curvilinear
coordinate transformation, in which one transforms an
irregular computational domain in the physical spaceinto a
regular {rcctangular) onc in the transformed space, and the
transformed equaltions can then be solved using standard
technigues. The curvilinear coordinate transformation can
also be used to minimize the truncation error of the discrete
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solution by appropriately distributing the grid nodes; some
studies on this aspect were reported in [9].

One of the most fundamental problems in solving the
incompressible Navier-Stokes equations in primitive
variables using finite difference or finite volume formula-
tions is where to locate the unknowns. Two commonly used
approaches are the staggered and non-staggered grids. On a
non-staggered grid, all unknowns are located at the same
posilions as the grid nodes, while on a staggered grid one
velocity component is located at the center of cach grid
surface and the pressure value is located at the center of the
grid cell.

The advantage of the non-staggered discretization is that
it is simpler to implement, and easier to extend to general
curvilinear coordinate systems. But it generates spurious
oscillations in the pressure field if central differencing is used
in the discretization of the pressure gradient and the
continuity equation (the weil-known “checkerboard oscilla-
tions.”). A remedy to this difficulty is the use of one-sided
differencing; then the resulting scheme is only of first-order
accuracy (perhaps second-order one-sided differencing may
be used for discretizing the pressure gradient and/or the
continuity equation}. Another popular remedy is to add an
artificial elliptic term of the pressure to the continuity
equation. For example, Linden et al. developed a multigrid
solver in which the term - wh?® Ap is added to the continuity
equation, where w is a positive parameter and / is the grid
step size [ 107]. The main problem with this kind of scheme
is that the discrete continuity equation cannot be satisfied to
machine accuracy, and the results may be poor if rapid
variations in the pressure field exist. The non-staggered
discretization has another disadvantage in that artificial
boundary conditions for the pressure are needed. In contrast,
with the staggered discretization, spurious pressure oscilla-
tions cannot appear (at least on a Cartesian grid) and no
boundary conditions for the pressure are needed.

The main difficulty in extending the staggered notion
from the Cartesian coordinates to general curvilinear
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coordinates resides in the choice of independent variables.
As recommended in [7], from the viewpoint of numerical
accuracy and conservation of physical laws, it is better to
discretize the momentum equations using the Cartesian
velocity components, since it permits the full conservation-
law form and the accuracy of the numerical results is less
sensitive to the skewness and non-orthogonality of the grid.
Also the transformed equations have a much simpler form
in the Cartesian velocity components than in the curvilinear
ones. On the other hand, to retain the full advantage of the
staggered discretization, we should define, on each surface
of a grid cell, the velocity component normal to the surface;
this means that the contravariant velocity components
should be used as independent unknowns. These contradic-
tory considerations make the choice of independent velocity
unknowns somewhat delicate. Generally, when taking
Cartesian velocity components as independent unknowns,
a “naive” extension of the notion of the staggered discre-
tization is considered by defining one Cartesian velocity
component at each grid surface. An example of this type of
scheme is the solver developed by Shyy et af. [5, 6] which
has been successfully applied to the computations of a wide
range of flow problems. The performance of these schemes
is generally orientation dependent, and they may produce
spurious pressure oscillations in some special situations (i.e.,
the 90° turning of the grid lines with respect to the Cartesian
directions). Although Shyy and Vu pointed out, after a
detailed analysis, that the spurious pressure oscillations
may only appear in very restricted situations which should
not be encountered on general curvilinear grids [7],
nevertheless the convergence rate may be affected by grid
orientation, especially in a multigrid solver where a good
h-ellipticity measure [ 1, 11] of the discrete system is crucial
for the overall efficiency. Evidently, this difficulty is caused
by the asymmetric location of velocity compoenents and
momentum equations.

In the present paper we describe a multigrid solver on a
curvilinear grid based on a staggered distribution of
unknowns in which all Cartesian velocity components are
defined at all gid surfaces. The symmetric distribution of
unknowns is important to ensure the independence of the
convergence rate and accuracy of the results on the grid
orientation. Although in this scheme more discrete velocity
components and discrete momentum equations are
involved than on a traditional staggered grid, we wili see
that the extra amount of work introduced is relatively small.
An extension of the SCGS relaxation scheme (symmetrical
collective Gauss—Seidel relaxation) of Vanka [3] is used as
the smoothing procedure of the mulitigrid solver, in which
the projections of the momentum equations in the local
curvilinear directions are used to simplify the linear systems
of equations to be solved. A box-line version of the
SCGS relaxation is also proposed. Some numerical results
concerning this scheme are reported.

2. THE GOVERNING EQUATIONS AND
THE DISCRETIZATION

We restrict our descriptions to two-dimensional case. The
steady incompressible Navier-Stokes equations in primitive
variables are written in the form

1
*EAH‘}'HHX"'UM},'F‘DX:f]

1
% dv+uv, +ov, +p, = f;

u.+v,=0

+ boundary conditions,
where x and p represent the Cartesian directions, « and v
denote the Cartesian velocity components, f, and f, denote
the external force, p denotes the pressure, and R > 0 is the
Reynolds number.

We introduce the following coordinate transformation
which transforms the computational domain in the
(x, ¥)-plan into a rectangular region in the (&, »)-plan:

x=xi(&n)  y=ylL )

Then the governing equations are transformed into
1 1 1
_Edéqu+j(Uu§+ Vun)+}(ynpfﬁyfpn)=fl

1 1 1

—-EAE,JU-F}(UUE-F l/u,,]+‘—I(—x,“tJ¢+x¢p,,)=f2
U.+V,=0,

(2)

where J = x; y, — x, y; is the Jacobian, U= y,u— x,v, and

V= — y.u+ x.v are the contravariant velocity components
and
b 8t i a ]
dg=—la=—=-2 — |+ P—= —

is the Laplace operator in the (¢, ) coordinates. The
coefficients for 4, are defined by

a=xptyy  B=XeX,kveyy,  y=xi+ i
P= —% Cyglaxe — 2Bxg, +yx,,)

= X, (Ve =28y, +10,,)]
Q=— ‘% [— velaxg —2fx,, +yx,,

toxgaye — 28y, +7¥,,) ]
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FIG. 1. The current box.

We assume that the above coordinate transformation
does not degenerate, ie., a>{, y>0, J#0 (s0 J does not
change sign).

To discretize Eqgs. (2), an uniform (N 4+ 1) x (M + 1) grid
in the (£, n)-plan and a staggered distribution of unknowns
are used. In contrast to the traditionai staggered discretiza-
tion on a Cartesian grid, both 1 and v are defined at the
center of each grid surface and p is defined at the center of
cach grid celi (see Fig. 1).

The discrete equations are obtained by approximating all
derivatives in Egs. (2) except the convection terms by
second-order central finite differences while second-order
upwind differencing is used to discretize the convection
terms {however, near boundaries, central differencing is also
used for the discretization of the convection terms; refer to
[12] for details on the treatment near boundaries). Note
that boundary extrapolations of the pressure are needed in
the momentum equations since both p. and p, appear
at the same time (or, equivalently, second-order one-sided
differencing may be used).

In the following sections, grid surfaces along the &-lines
will be referred as “Z-surfaces™ and those along the »-lines
will be referred as “y-surfaces.”

3. THE EXTENDED SCGS RELAXATION SCHEME

The SCGS relaxation scheme was first proposed by
S. P. Vanka [3] on a Cartesian grid. It lies in the category
of “box rclaxation” schemes and has been proved to be
an efficient smoother for multigrid solvers, especially for
recirculating flows with high Reynolds numbers. For the
grid system and finite difference approximation of the
Navier-Stokes equations described in the last section, it is
easy to extend the SCGS scheme in a straightforward way,
as explained below.

For a given grid cell (also called a “box™), we have nine
discrete unknowns (including eight Cartesian velocity
components located on the four surfaces and one pressure
located at the center) and nine discrete equations {eight
momentum equations and one continuity equation), as
shown by Fig. 1 (the unknowns in the current box are those
defined at the locations marked by “«” in Fig. 1). The

discrete momentum equations are first linearized and
diagonalized by substituting the off-diagonal velocity com-
ponents and the coefficients of the convection terms with
their most recent old values; then they are coupled with the
discrete continuity equation to form a 9 x 9 linear system of
equations of the form

(« 0000000 «| [u] [«
0 = 00 0 0°0 0 = v, *
0 0 » 00 0 0 0 = H, *
0 00 «= 0 0 0 Q0 = v, *
0000 +« 0 0 0 = u, | =1=1, (4)
000 0 0 x 0 0 = v, *
0000 00 » 0 = u, %*
00 0 0 0 0 0 + » v, *
L* * ok * x & x % () Lp e L* J
where “+” denotes nonzero entries. This is very similar to the

SCGS relaxation on a Cartesian grid, except that the linear
system of equations to be solved involves more unknowns
and equations. Due to the special structure of the linear
system the cxtra amount of work needed for its solution,
relative to the solution of a 5 x § linear system of the same
form as in the original SCGS relaxation, is small compared
to the total amount of work.

But if we extend the above relaxation scheme to a corre-
sponding box-line version foliowing the steps of [13], then
the linear system of equations to be solved for a ¢-line will
have 7N —2 unknowns with a coefficient matrix of band
width 13, instead of a system of 4N — | unknowns and band
width nine as on a Cartesian grid. In this case, the extra
amount of work introduced in the solution of the linear
systems will be important. In fact, the system (4) can be spiit
into one 3 x5 linear system of equations and four scalar
equations by projecting the discrete momentum equations
in curvilinear directions.

We consider the projection of the momentum equations
in the contravariant directions since it permits the
same form of relations between contravariant velocity
components and the pressure as in the original SCGS
relaxation. For example, on the east surface of the current
grid cell, we can write the linearized and diagonalized
momentum equations in the form

1
Ao+ — (yapi—yipP)=g1

1
Aevﬂ+J— (—x,pi+xipy)= g5

where A,, g1, and g3 are constants {computed from the
most recent vatues of the unknowns and other data),
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J.= xgy; +_y§xf’]; (r: py) repre§ents finite difference
approximation of the pressure gradient on the east surface
which is computed by

p‘;:(pe_Pc)/Aé

pf}= dl'(pm'-*' Pn— (pse+ ps})/dﬂv

where A¢ and Ay are the grid step sizes,
Subsequently, “¢,” “e,” “w,” “s,” and “»n” appearing in the
super- or subscr:pts will always mdlcate the locations where

corresponding values are evaluated (“¢” means “central” or
“current,” “¢” means “west,” etc.).

LL) u !9

¢” means “east,
By projecting Egs. (5) in the normal direction (y;, —x;)
we obtain the equation

AU, +J (a.pi—B.p})=y, 81— x; g5,

where U,= yju,—x;v. is the contravariant velocity
Compon.enl ElI'ld ‘O:e = (x:;:)l + (yf;)za ﬂe = xﬁ Y; + ,VE y:;, as
defined in (3). This equation can be further written as

1
AU, ——=
eeJAé

L3

aep('=Gea

where

e L ! e
G(’=ng?—xngz_mdepe)ZBepﬁ’

Since G, does not contain unknowns defined in the current
box, it can be considered as a known constant.

The normal projections of the momentum equations on
the west, south, and north surfaces can be similarly
constructed. By combining the four resulting equations
with the continuity equation, we obtain the following
5 x 5 linear system of equations coupling the contravariant
velocity components and the pressure:

o
CE—.
T azPe=C

[+
A‘ ) W — i
W Ull + J“‘ Aép(‘ GH

AV, —=t =G (6)
n n J"A’? [ n
AV +Lp =G
k) 5 JSA’? s 5
1

LU, U 4 (¥~ V) =0,

A An

It is easy to show that the system (6} always has a unique
solution (note that A4,, 4,, 4,, and A4, are all positive
coefficients).

For the original momentum equations to hold, we need
to involve their projections in other directions. The natural
choice is the tangent directions of the grid surfaces, ie.,
{x,. y,) for the east and west surfaces and {x., v.) for the
sourth and north surfaces. Since the resulting equations are
decoupled from each other, we find easily the solutions

V,= (xp 81+, 85—pr)A,
V.= =(x 87 +ry; g — ::)/Aw
(7
( 531+J’5g'2_[75)/145
(x§g1+yfg2 PE)/A»H
where V xju, .+ yiv; (J=e,w) and U_r w;+ viv;

{(j=s,n)are the covariant velocity components.
Using the solutions of (6)-(7) the Cartesian velocity
components are updated by:
ue= (U + x5 7 u,
~xSU, + yi V) e,
u, =y, U,+x} V. )z
b, = ( _'x: Uw + y,?' l-71|-)/C(w

ve=(

o ¥ 5 (8)
u,=(x3U —y;fV Wys
un=(x§ _yé: u/?n

v, = (W0, + X2V

A complete SCGS relaxation swap consists of scanning
all grid cells in a pre-determined order (e.g., lexicographical)
and of updating the unknowns defined on each cell using

(6)}-(8).

Remark. At convergence, the discrete solutions will
satisfy the equations,

ynLl(ua U, p)—anz(H, pr)=0
alu, v, py=0;
ngl(ua v, P)+}"£L2{u’ v, P)=0

(u, 0, p}=0,
(9)

on the y-surfaces,
qul[ua o, p) + ynL

on the £-surfaces,
—YVeL(u,0,p)+x.Ly

where L,(u, v, p)=Qu + (1/9)(y, p:— v p,) ~ 11, La(w, v, p)
=Qu+ (/N —x,p:+x,p,)—f, and Q=(1/R)4,,+
(1/I0U(8/8Ey+ V(8/dn)) (in a discrete sensec). We obtain
immediately from (9) that L, (u, v, p)=0and Ly(u, v, p) =0,
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so the momentum equations are satisfied. It is interesting to
note that if we only update the contravariant velocity
components by setting ¥, =¥, = T, =0, =0in (8) (in this
case the values of ¥ on the y-surfaces and those of I/ on the
E-surfaces used in the coefficients of the convection terms
(see Eqgs. (2)) should be calculated by interpolations, since
only the normal velocity component are available on each
surface), then the final solution satisfies the equations,

Yo Ly(u, v, py—x, Ly(u, v, p)=0, on the n-surfaces

on the &-surfaces.
(10)

—yeL(u, v, py+ x: Ly(u, v, p) =0,

Equations (10) do not guarantee that the original momen-
tum equations are satisfied. But if the grid is formed by two
families of uniformly distributed parallel straight lines in the
{x, y)-plan, ie., if the metric derivatives Xgy Xy, Y, and y,
are all constants, then it is easy to see that Egs. (10) are
equivalent to

Ll{U& V~P)=Os
LE(Us V’p}=05

on the n-surfaces

on the &-surfaces.

The above equations just represent the traditional staggered
discretization using the contravariant velocity components.

4. BOX-LINE VERSION OF THE SCGS RELAXATION

The relaxation scheme described in the last section
1s a “box” relaxation scheme. For efficiently handling
anisotropic problems, a box-line version of it is needed. The
box-line relaxation is constructed by, instead of a single grid
celi, considering simultaneously all grid cells in a &-line or
n-line and updating all unknowns located in these cells by
solving a linear system of equations.

Consider the case of £-line relaxation. All unknowns at
the locations marked by “«” in Fig. 2 are to be updated
simultaneously using corresponding discrete equations. In
order to describe the relaxation scheme, consider, for
example, the lincarized momentum equations defined at the
location marked by “ «”in Fig. 3. We write these eqations in
the form

1
Aw“;."*'Acuc‘l‘Acua"'}(}’;Pc—.VEP;;): £

| .
AM'UW+Acvc‘+Aeve+}(_x;p¢+xépq)=g23

L) . ¢ . o e f

. — - -—

FI1G. 2. Unknowns updated simultanecusly on a £-line.

o 0
Pnw Pre
U u, u,
S S A CH A
Pgw Pée — ¢
FIGURE 3

where A,, A, A,,, g,, and g, represent known coefficients
(the notations used here are different from those in the last
section). As in the box version, we project the above equa-
tions in the direction ( y;, ~x) and the resulting equation is

Aw[y(p;uw - ‘x;vu') + A(‘(y:,u(' - xf]v{‘) + Ae(y:uu(' - ‘x;ve)

] g (4
T lape— Bp,)=y,81—x, 82

For obtaining a linear system of equations on the
contravariant velocity components, we write the above
equation in the form

o

AU+ AU A AU+

Pe

£ ¢ ﬂ
=y,,gl—xqu+jpn

+ ALy =y ue—(xy—x})v,)]
+Ae[(y; - J’;) o — (X;‘— x;) U[,)],

where U;= — yJu,—x}v; (j=w, ¢, e). Replacing p, and p,
by their finite difference approximations and substituting
the most recent old values of the velocity components into
the right-hand side, we obtain a linear equation coupling
the contravariant velocity components and the pressures of
the form:

&

U, U.
AU+ A, ‘+A”U“+JA§

{r.-p)=0G

The other momentum equations can be treated similarly.
The resulting linear equations are closed by the continuity

"
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FI1G. 4. Numbering of unknowns in a &-line.
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equations defined on the current &-line. Thus we obtain a
linear system of 4N —1 equations and 4N — 1 unknowns
coupling the contravariant velocity components and the
pressures. Using the numbering of unknowns shown in
Fig. 4, the band width of the coefficient matrix equals nine,
so the linear system can be solved by a direct method.

The linear equations on covariant velocity components
are obtained in the same way. Since these equations are
decoupled from the pressures of the current £-line, we only
have to solve three tri-diagonal linear systems, with ¥ or
N — 1 unknowns, respectively.

5. THE MULTIGRID PROCEDURE AND
NUMERICAL RESULTS

The FAS (full approximaltion storage, of. [ 1, 2]) scheme
is used in the multigrid solver. The coarser grids are
obtained from the finest one by dropping successively odd
grid lines in both ¢ and » directions (the grid lines are
numbered from O to N in the & direction and from 0 to M in
the » direction on the finest grid). The restriction and
prelongation operators constructed in [12] for a Cartesian
grid are used here for transferring functions and residuals
between grids (however, these operators are of only first-
order accuracy on non-smooth grids). The other details of
the multigrid solver are just the same as in [12].

The first numerical example is the driven cavity problem.
The finest grid is a 65 x 65 one formed by zigzag lines. The
orthogonality and skewness of the grid is controlled by a
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‘:r SesAngas.

iEEs
insi
=00 §=0.2
ST
; | E)1 R o
i 3{" % {RARER)
=
7 & D
%
Loy s 2% £ %
- a . Tty -8 bod L
L REOBGO0E
E ‘H:ﬂ >,
: ’ ot
2
i} _;* H :::Eg AR !
i A 2] a3%,
HH o
B B
1 7 Hy 1 B 7 ety
HERER, HH Bof i & X0
E 1323 i3 SR 2
§=04 & =06

FIG. 5. Test problem 1—the finest grid.
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FIG. 6. Test problem 1—convergence history for §=0.0: “=," box
relaxation; “s,” box-line relaxation.

parameter ¢ = 0. With é =0 we obtain a uniform Cartesian
grid. Computations are done with 8 = 100 for § == 0, 0.2, 0.4,
and 0.6, respectively. The corresponding grids are shown in
Fig. 5. For =06 we have an excessively skew, non-
smooth, and non-orthogonal grid.

Both box and box-line relaxations are tested for this
problem. The ¥{l,1) cycles are used in the multigrid
iterations. The box-line relaxations are realized in a
symmetric way; i.e., the Z-line relaxation is used in the
pre-relaxations and the #-line relaxation is used in the post-
relaxations. Through numerical experience we find that
when evaluating the coefficients of the convection terms,
only the normal velocity components should be used. This
means that on a #-surface, for example, V in Egs. (2) should
be calculated by interpolating those values defined on the
four nearest &-surfaces. Otherwise we obtain very slow
convergence.

The convergence histories of the multigrid solver are
shown in Fig. 6-9. These figures show that the convergence
rate of the multigrid solver is affected by the grid skewness

Residual

10

1
101
10 7?
103

1w

10 %

— MG cycles
1 3 E 7 9 11 13

FIG. 7. Test problem l—convergence history for 4=0.2: =" box
relaxition; “ «,” box-line relaxation.
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Residual
10 4
1
10~
10 72
10 73
10 1
10 5 MG cycles
1 5 9 13 17 21
FIG. 8. Test problem l—convergence history for 6 =04: “<,” box
relaxation; “ «,” box-line relaxation.
Residual \ %\_j I

10 4 f=a4 b=06
FIG. 11. Test problem 1—streamlines.
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FIG. 9. Test problem 1—convergence history for 4 =0.6; “<,” box
relaxation; = ,” box-line relaxation.
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FIG. 10, Test problem |—convergence history of the box-line relaxa-
tion scheme as a single-grid solver: o, d=0; », d=04; x, 6 =06. FIG. 13. Test problem 2—the grids.
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FiG. 14. Test problem 2—streamlines.

and non-orthogonality. But we think that an important
reason of the siow convergence for large vaiues of § may be
the poor interpolation operators used in the multigrid
solver since they are second-order operators only on
smooth grids. This is to be confirmed by further studies,

In above calculations, the under-relaxation factor is set
to 0.75, 0.75, 0.5, and 0.4 for 6=0, 0.2, 0.4, and 0.6,
respectively. They are chosen after several simple trials. We
have not sought the optimal relaxation factors.

Another remark about Figs. 6-9 is that the asymptotic
convergence rate of the box-line relaxation scheme is faster
than the box relaxation for §=0 and 0.6, but siower for
0 =0.2 and 0.4. We cannot draw any conclusion here about
this fact because the relaxation factors used are not the
optimal ones. On a vector computer like the Convex C120,
the box-line relaxation requires less CPU time than the box
relaxation because the former is more suitable for vector
processing.

Figure 10 shows the convergence history of the box-line
relaxation as a single-grid solver. In this computation, the
relaxations are also performed in a symmetric manner by
using £-line relaxation when the iteration number is odd
and #-line relaxation when the iteration number is even. The
asymptotic convergence rate is not much slower for 6 = 0.6
than for 6 =0. Figures 6-10 can also serve as a demonsira-
tion of the performance of the multigrid solver versus
the corresponding single-grid solver. (The CPU time of
one (1, 1)-FAS cycle is roughly 3-4 times that of one
relaxation swap on the finest grid.)

The streamlines and isobars are shown in Figs. 11-12. We
observe that the results obtained with § =0.2 are in good

FIG. 15, Test problem 3—the grid and streamlines.

TABLEI

CPU Time per Iteration in Seconds

Metric derivatives precalculated Metric derivatives calculated at run-time

One relaxation  One F(1, 1} cycle One relaxation One F(1, 1} cycle

466 159,
594 20.04

737
843

2519
29.36

accordance with those obtained on the uniform grid (5 = 0).
Even for §=04 and 0.6 the results are acceptable (some
oscillations of the isobars can be observed for é =0.4 and
0.6; they correspond to small pressure values).

The second numerical example consists of non-square
cavities. The boundary condition is the same as in the first
example. Three problems are considered. The domains and
corresponding grids are shown in Fig. 13, and Fig. 14 shows
the streamlines obtained for R = 2000 on 97 x 97 grids. The
number of multigrid iterations needed to reduce the total
residual below 10~ is respectively 121, 59, and 98 for the
three cases, using V{1, 1) cycle and box relaxation (the
underrelaxation factor is set to 0.55).

The last numerical exampile is the flow between rotating
non-concentric cylinders, as shown in Fig. 15. The domain
is bounded by two circles x> + y*=5%and (x— 1)+ y?=
22, The anguiar velocity of the inner cylinder is 1 and the
angular velocity of the outer cylinder is — 1. The streamlines
shown in Fig, 15 are obtained on a 321 x 65 grid for R =50,
The underrelaxation factor is set to 0.5 and 50 multigrid
iterations are needed to reduce the residual below 1074,

Finally, to compare the extra amount of work introduced
in the present scheme, we give in Table [ the CPU time of
one iteration on a 65x65 grid using box relaxation,
evaluated on a personal computer (33 MHz 80386/80387).
In the table, two numbers can be found in each entry; the
first one corresponds to the CPU time needed when only
one velocity component is defined at each grid surface (the
traditional MAC grid), while the second one corresponds to
the CPU time needed by the present scheme. It is clear
from this table that the extra amount of work introduced is
about 26 % if the metric derivatives (x,, Xx,, ¢tc.) are pre-
calculated and stored, and 14 % if the metric derivatives are
re-calculated during each iteration.

6. CONCLUSIONS

A multigrid solver for the steady incompressible
Navier-Stokes equations is proposed. This solver
emphasizes on the symmetric distribution of velocity
unknowns and thus eliminates the effect of grid orientation
on the convergence rate and numerical accuracy (this point
is evident from the scheme itself). The numerical results
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presented here have no practical interest and little
significance about the ability of the solver for handling
general flow problems on general domains; they only serve
as an indication on the convergence rate and accuracy of the
solver on skew, non-orthogonal grids. Further numerical
experiences with this solver are needed.

We conclude this paper by pointing out that the
staggered distribution of unknowns used in the present
solver is also applicable to the pressure correction methods.
This can be done in the following way: in the pressure
correction step, only the contravariant velocity components
are updated, while in the solution of the momentum
equations for a given pressure field, both » and v are
calculated at all grid surfaces. The extra amount of work
introduced is not significant because the linearized momentum
equations for » and » have the same coefficient matrices.
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